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The Penning ionization Ar+ He*(21S,23S) f Ar+(2P3/2,2P1/2) + He + e- is investigated with ab initio and
chemical reaction dynamics calculations. Ab initio molecular orbital calculations have been carried out to
obtain resonance potential energy curves and partial widths for each spin-orbit ionized state. The result is
compared with optical potentials obtained from experiments. The total widths are not well described by single-
exponential functions both for the singlet and triplet entrance channels. This indicates that a more flexible
functional form should be used to obtain the imaginary part of an optical potential. The total ionization cross
sections are calculated by quasiclassical trajectory as well as quantum dynamics in the collision energy range
of 0.05-1 eV. The calculations show that the ratio of the cross section for the2P3/2 ionized state to that for
the2P1/2 state increases with collision energy, in agreement with experimental results. It is found that the sum
of the partial ionization cross sections significantly deviates from the total ionization cross section at higher
collision energies in quantum dynamics calculations. One should be cautious for the application of quantum
dynamics treatment to treat partial ionization in particular at higher energies. Differential cross sections are
also calculated by a quantum-dynamics scheme.

1. Introduction

Atoms and molecules in superexcited states of the first kind
can autoionize through configuration interaction with ionized
state, in which the superexcited states are embedded. Penning
ionization1 and associative ionization are two examples of the
autoionization.2 The superexcited He* can cause an atom or a
molecule to ionize during collision

where M is an atom or a molecule except for He and Ne,
because the excitation energies of He*(21S, 20.616 eV) and He*-
(23S, 19.820 eV) are larger than the first ionization energy. In
the present paper, we study the collision with Ar, ionization
energies of which are 15.759 eV(2P3/2) and 15.937 eV(2P1/2):3,4

and

The collision of He* with Ar has been investigated experi-
mentally by many researchers. Absolute total ionization cross
sections, quenching rate constants, energy dependence of cross
sections, and relative electronic state populations have been
obtained using flowing afterglow, static afterglow, beam-gas,

crossed-beam, and electron spectroscopy techniques.5-7 Re-
cently, Longley et al. and Ohno et al. measured collision energy
dependence of Penning ionization electron spectra (PIES).8,9

Longley and Siska measured angle-energy distributions of
Penning ions using crossed molecular beams.10 Feltgen et al.
carried out a measurement of the collision energy dependence
in the energy range of 0.003 to 6 eV.11 Siddiqui et al.
investigated the van der Waals molecule Ar2.12

The resonant potentialV and widthΓ, which are the real and
imaginary parts of the optical potential, have been obtained with
fitting parameters from experiments by several groups for the
singlet11,13-15 and the triplet processes.11,16-21 However, there
is no direct procedure to date from an experiment to obtain a
complex potential to our knowledge. This is quite different from
the situation that an usual potential energy curve is obtained
from an experiment of vibration-rotational spectroscopy by the
Rydberg-Klein-Rees method.22-25 Therefore, the determina-
tion of the optical potential from experiments suffers from
ambiguity. Thus, ab initio determination of the potentials and
the widths is necessary to clarify the ionization mechanism.

We have been studying Penning ionization reactions of
molecular targets which yield several ionized states. We have
carried out ab initio molecular orbital calculations26,27 and
classical and quantum dynamics calculations on the bases of
ab initio optical potentials.28-30 We already carried out an ab
initio calculation and a classical trajectory calculations for the
triplet system and reproduced the increase of the ratio of the
cross section for the2P3/2 state to that for the2P1/2state with the
energy.31 In this paper, we calculate the Ar-He*(21S) and Ar-
He*(23S) ionization and compare the results with experiments.

* To whom correspondence should be addressed. Email: ishida-t@
eng.shizuoka.ac.jp. Fax:+81-54-478-1293.

M + He* f M+ + He + e- (1)

Ar + He*(21S) f Ar+(2P3/2,
2P1/2) + He + e- (2)

Ar + He*(23S) f Ar+(2P3/2,
2P1/2) + He + e- (3)
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2. Calculations

2.1. Ab Initio Calculations. The entrance channel of Penning
ionization is embedded in ionization continua, so that we use
an optical potential. The entrance potentialV(R) and the width
Γ(R) are the real and imaginary parts of the optical potential
V*(R):

whereR is an internuclear distance.
Γ(R) is the sum of the partial widthsΓ(i) (R):

wherei denotes an individual ionized state. In the present study,
the real partV is the resonance potential for Ar*+ He. TheV
and Γ(i) are obtained from ab initio calculations based on the
Feshbach projection operator method.32,33 In the Feshbach
projection operator method, we divide the CI space into a space
to describe resonance state and spaces for ionized states and an
ejected electron. Ionization occurs through configuration interac-
tion between the resonance state and ionized states. We define
the projection operatorsP(i) to obtain the latter spaces:

and

where Ψ+
(i) is the ith ionized state for (Ar-He)+, φj is an

(square integrable) orbital to describe an ejected electron, and
A is the antisymmetrizer. We see later thatφj is approximated
by the projection of a Coulomb function onto a (square
integrable) vacant orbital. Then is the number of orbitals to
expand an ejected electron. Thus,P(i) is a projection operator
onto one of continuum states correlated asymptotically to Ar+

+ He + e-. We approximatedΨ+
(i) with a single Slater

determinant. Molecular orbitals for a CI calculation were
determined by a multiconfiguration self-consistent field calcula-
tion (MCSCF). The supplementary projection operatorQ for
the resonance state is defined as

whereNion is the number of relevant ionized states. In this case,
Nion ) 6 with the spin-orbit coupling. A resonance state occurs
at energyEr + ∆, whereEr is an eigenvalue ofQHQ with
eigenvectorΨr and the small shift∆ was neglected in the present
study as usual. The widthΓ(i) of the resonance state for each
ionization is

whereF(i) is the density of states for theith ionization, andø(i)

is the wave function for theith final state (the ionized state
plus a continuum electron). We approximate a released electron
with a Coulomb functionφc(i)and expand in terms of partial
waves:

and

where Fl
(i) is the radial Coulomb wave function for the

electron which is released in the ionization into theith state,
k(i) is the wavenumber of a released electron,r̂ is a unit vector
for r, and Yl

m(r̂) is a spherical harmonic function. When the
Coulomb wave function is used for a released electron, 2πF(i)

) 4/k(i). Furthermore, we approximateφlm
(i) in the following

manner:

Thus,Γ(i) is expressed by the configuration interaction matrix
elements and the overlap of the continuum orbital with usual
square integrable molecular orbitals. Coulomb functions were
employed to express ejected electrons, and the partial waves of
the functions were expanded by the vacant orbitals. The center
of the Coulomb functions was located on the Ar+ atom. The
overlap integrals in eq 12 used to express expansion coefficients
were evaluated by numerical integration. We used the double-
exponential function formula by Takahashi and Mori34 for the
radial part, and the Gauss-Legendre35 and the trapezoidal
formula were used for the angular parts.

The basis set employed was a triple-ú plus polarization (TZP)
class set augmented with diffuse 2s2p functions on the He atom
to describe the 2s orbital of He. We performed averaged MCSCF
calculations for three ionized states of (Ar-He)+ that correlated
asymptotically with the2P state without the spin-orbit interac-
tion. Each ionized state was described by one configuration.
The molecular orbitals determined by the MCSCF calculation
were used as a basis for a SDCI (single- and double-substitution
configuration interaction) calculation. We used the Ar-He(1s2s)
configuration as the reference of the SDCI calculations. Twenty
vacant orbitals were included in the SDCI space. The dimensions
of CI matrices generated were 17 969 for the singlet state and
26 610 for the triplet state. Thus, the resonance state is described
by 17 909 (17969- 3 × 20) and 26 550 (26610- 3 × 20)
CSFs without spin-orbit interaction, for the singlet and triplet
states.

Ionized spin-orbit states were determined by the CI calcula-
tions for six spin-orbit ionized states with the Breit-Pauli
Hamiltonian.36 Widths for spin-orbit states are evaluated from
the projection of spin-free states.

The codes for the Feshbach projection operator calculations
as well as for spin-orbit CI calculations were added to quantum
chemistry program HONDO7 by Dupuis et al.37 Spin-orbit
integrals were obtained based on the method that King and
Furlani proposed.36 Their method uses the second derivatives
of one-electron and two-electron integrals. The Hessian calcula-
tion portion of the HONDO7 program was utilized to obtain
relevant integrals.

2.2. Classical and Quantum Mechanical Calculations for
Dynamics.Quasiclassical and quantum mechanical calculations
on the potential curve forV and the widthsΓ(i) were carried
out on a cubic spline fit to the points from ab initio calculations.
The classical equations of motion were integrated by the fourth
order Adams-Moulton scheme,38 which was initiated by the
fourth-order Runge-Kutta method.35 The time step used was
1.0× 10-16 s. Total and partial ionization probabilities for each
time step were evaluated from energy widths, and accumulated
to yield the probabilities for one trajectory. This is based on

φlm
c(i)(r) ) Fl

(i)
(-1/k(i),k(i)r)Yl

m
(r̂)/r (11)

φlm
c(i) = ∑

j

|φj〉 〈φj|φlm
c(i)〉 (12)

V*(R) ) V(R) - 1
2

iΓ(R) (4)

Γ(R) ) ∑
i

Γ(i)(R) (5)

P(i) ) ∑j)1
n|øj

(i)〉 〈øj
(i)| (6)

øj
(i)

) A(Ψ+
(i)

φj), (j ) 1, ...,n) (7)

Q ) 1 - ∑
i)1

Nion

P(i) (8)

Γ(i) ) 2πF(i)| < P(i)ø(i)| P(i)HQ|Ψr > |2 (9)

P(i)ø(i) = A(Ψ+
(i)

φ
c(i)) ) ∑lmA(Ψ+

(i)
φlm

c(i)
) (10)
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classical formulas.39,40and we call the “probability-accumulating
trajectory (PAT) method”.30

The impact parameter isb ) (l + 1/2)/k, wherel is an angular
momentum quantum number andk is an initial wavenumber of
the particle with the reduced massµ of the system. The initial
separation between He and Ar is 15 Å, which accordingly
determines the largest value ofl. The total and partial ionization
probability into theith ionized state for a givenl are expressed
by

and

whereW(t) ) Γ(R)/p andWi(t) ) Γ(i)(R)/p are the rates of total
and partial ionizations. The total and partial cross sections are
given by

and

It can be shown in these formulas that the total ionization cross
section is equal to the sum of the partial ionization cross sections.
Calculations using optical potentials determined from experi-
ments by other authors were also performed in the same scheme
for comparison.

Quantum-dynamics calculations for total and partial cross
sections were carried out following the method of Cohen and
Lane.41 The form of the Schro¨dinger equation is given by

whereψ(R) is the wave function describing the relative motion
of the He and Ar species andV* is given by eq 4. Ifψ(R) is
expanded as follows,

wherePl(cosθ) is a Legendre polynomial. The radial equation
then becomes

Equation 19 was solved using Johnson’s log-derivative
method.42 The integration was done up to the distance of 15 Å.
This method yields the reaction matrixK . The original method
was modified to allow the potentials and radial wave functions
to be complex. The partitioning of the equation into the real
and imaginary parts was not done. The resultant reaction matrix
K and scattering matrixSwere therefore also complex. (In this
case, bothK and S are 1×1 matrices.) The ionization cross
section for thelth partial wave is given by

whereSl ) exp(2iδl) andδl is a phase shift.
Since the potentialV* is complex,δl is also complex. If we

defineηl to be the imaginary part of the phase shift, ionization
probability Pl for the lth partial wave is given by

The (total) ionization cross section is given by

For the partial ionization into theith ionized state, similar
quantitiesσ(i)can be defined,

but the sum of (partial) ionization cross section into individual
ionized states is not equal to the total ionization in this treatment

because the nonlinearity of exp(-4ηl).8,30

UsingS matrices, a differential center-of-mass cross section
I(θ) is calculated by scattering amplitude:

and

3. Optical Potentials and Ionized State Potential

3.1. Real Parts of Optical Potentials.Figure 1 shows the
calculated real part potential curveV for the Ar-He* ionization
with the curves obtained from differential scattering experiments.

For the singlet state, the curves determined by Martin et al.,13

Haberland and Schmidt,14 and Brutschy et al.15 are included in
Figure 1a. The real part of the optical potential by Martin et al.
has a shoulder atr ) 3.2 Å andV ) 26 meV. The shoulder
was qualitatively reproduced, but occurred at a higher energy
of V ) 200 meV atr ) 2.5 Å. This situation was also found in
the N2-He*(23S) system,26,28 which leads to ionization cross
sections than smaller than experimental ones, as discussed later.

The present singlet real-part potential does not reveal an
intermediate maximum. There have been arguments about the
existence of an intermediate maximum in the real part of
potential and whether the imaginary part is in a single-
exponential form mainly between Freiburg group and Siska’s
group.10,13-15,43-47 The unusual structure of the present real part
potential is much more enhanced than the other potentials, so
that it is difficult to discuss whether the structure of the potential
appears at or below 0.05 eV. However, as shown below, the
imaginary part of the potential cannot be described by a single-
exponential function. Thus, it would not be reasonable to argue
on the basis of the idea that the imaginary part of the potential
be a single-exponential function.

The present potential does not show a potential minimum
while other potentials obtained by experiments show very

Pl ) 1 - exp[- ∫-∞

∞
dtW(t)] (13)

Pl
(i) ) ∫-∞

∞
dtWi(t) exp[- ∫-∞

t
dt′W(t′)] (14)

σtot )
π

k2
∑
l)0

lmax

(2l + 1)Pl (15)

σ(i) )
π

k2
∑
l ) 0

lmax

(2l + 1)Pl
(i) (16)

[- 1
2µAr-He

∇R
2 + V*(R) - E]ψ(R) ) 0 (17)

ψ(R) )
1

R
∑
l)0

∞

ul(R)Pl(cosθ) (18)

( d2

dR2
-

l (l+1)

R2
+ 2µAr-He[E - V*(R)])ul(R) ) 0 (19)

σl ) π
k2

(2l + 1)(1 - |Sl|2) (20)

Pl ) 1 - |Sl|2 ) 1 - exp(-4ηl) (21)

σtot ) ∑
l

σl (22)

σ(i) ) ∑
l

σl
(i) (23)

σtot*∑
l

σ(i) (24)

f(θ) )
1

2ik
∑
l)0

∞

(2l + 1)(Sl - 1)Pl(cosθ) (25)

I(θ) ) | f(θ)|2 (26)
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shallow minima. A larger CI calculation may reproduce such a
shallow minimum.

For the triplet state, the curves obtained by Brutschy et al.,17

Siska,18 and Kroon et al.21 are included in Figure 1b.49 Burdenski
et al.19 and Parr et al.20 also proposed different optical potentials,
but the real part of their potentials are the same as Siska’s. The
internuclear distance at the minimum for the present potential
is 4.3 Å, and the depth is 36 meV in the present calculation.
Experimentally obtained potentials17,18,21are close to each other
for V* < 0.1 eV relative to the asymptote. Siska reported that
the minimum and the depth are 5.2 Å and 5.1 meV,18 and the
values of Brutschy et al. do not seem to be different by very
much in this scale. The depth of the minimum is larger in the
present calculation. Since the experimentally obtained potential
has a very shallow minimum, a quantitative reproduction seems
very difficult. The repulsive part of the potential is in good
agreement with Siska’s potential and width although he used
data up to 0.12 eV. Brutschy et al. performed the scattering
experiment up to 0.48 eV. Both the potential curves estimated
by Brutschy et al. and Kroon et al. have a steeper repulsive
part. The change of these potential energy curves (PECs) around
R ) 2.8 Å seems somewhat abrupt in this scale although the
PECs were adjusted to fit the experimental result. If more
flexible forms for real and imaginary parts of the potential are
used, this abrupt change may be reduced.

3.2. Imaginary Parts of Optical Potentials.The dependence
of total and partial widthsΓ on the internuclear distanceR is
shown in Figure 2.

See the footnote about the correspondence of the real and
imaginary parts.48

The decrease of the total width for the singlet channel is less
steep than the triplet width, which is due to the existence of the
Coulomb-type interaction in the singlet case.5 The present total
widths both for the singlet and triplet states decrease exponen-
tially although the widths show downward deviation at smaller
distances and upward deviation at larger distances. Thus, the
description by a single-exponential function is worse in these
regions. This situation can be seen in other systems.7,26,27

Nakamura proposed the downward deviation of the width at
smaller internuclear distances for the singlet state to explain
the energy dependence of the cross section.50 The width of
Haberland and Schmidt14 is not a single-exponential function,
but the behavior of logΓ is rather opposite to ours. Our result
for the singlet state indicates that width functions are not single-
exponential, but does not support the functional form by
Haberland and Schmidt.14 The width of Feltgen et al. gives the
minimum,11 which was determined to obtain the best fit the

Figure 1. The potential energy curve of the entrance channel. (a) Ar
+ He*(21S) and (b) Ar + He*(23S). The curves obtained from
differential scattering experiments by Martin et al.13 and Haberland and
Smith;14 by Brutschy et al.15 for the singlet in part a; and by Brutschy
et al.,17 Siska,18 and Kroon et al.21 for the triplet in part b are also
shown.

Figure 2. The dependence of total widthsΓ on the internuclear distance
R for (a) Ar + He*(21S) and (b) for Ar+ He*(23S). The ordinate is in
a logalithmic scale. The total widths obtained from experiments by
Martin et al.,13 Parr et al.,20 Haberland and Smith,14 Brutschy et al.,15

and Feltgen et al.11 are shown for the singlet in part a, and Brutschy et
al.,17 Siska,18 Parr et al.,20 Burdenski et al.,19 and Kroon et al.21 for the
triplet in part b.48,49 Note that logγ of Feltgen et al. forR < 3.4 Å is
essentially the same as that of Brutschy et al. in part a, and logγ of
Kroon for R < 2.3 Å is the same as that of Siska, and their own lines
are not drawn in the overlap region to avoid confusion.
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collision energy dependence of the total cross section, but the
present result shows no minimum. Feltgen et al. attributed the
minimim of their imaginary potential and that of their real
potential to the 2s-2p hybridization. However, the occurrence
of the minimum would not be due to the hybridization since
the present calculation includes both diffuse 2p function in the
basis set and the 2p space in the CI space.

For the triplet state in Figure 2b, both the gradient and the
magnitude of logΓ for total ionization are in good agreement
with those from experiments.51 Brutschy et al., Burdenski et
al., and Siska used a single-exponential function to reproduce
their experimental result, but the present curve shows that a
deviation from a single-exponential behavior is significant at
smaller distances and at larger distances, as for the singlet state.
This result is consistent with later evaluation of widths by
Burdenski et al. and Kroon et al. Burdenski et al. modified
Siska’s width to a double-exponential function in order to
reproduce their collision energy dependence on total ionization
cross section at lower energies.19 Kroon included this downward
deviation in a total width function to explain the energy
dependence on the total cross section at higher energies.21

Figure 3 shows the calculated total and partial widths which
correspond to the ionization into each spin-orbit state for the
singlet and triplet species. Both the2Σ1/2 and 2Π3/2 states
correlate adiabatically to the2P3/2 state of the Ar+ ion, and the
2Π1/2 state correlates to the2P1/2 state. Each state is doubly
degenerate. Each partial width decreases exponentially with
internuclear distance inR(Ar-He*) ) 3-4 Å. At smaller and

larger internuclear distances, however, the deviation from the
exponential behavior is also clear for each partial width.

The partial widthsΓ corresponding to the ionization into the
2Σ1/2 and 2Π1/2 states are much larger than that for the2Π3/2

state. This is due to the pureΠ character of the2Π3/2 state. In
the Penning ionization of atoms with He *(1S,3S), σ-partial
waves with respect to the projectile-target axis are dominant,
and the widths for ionization into the2Σ states prevail.52 Thus,
the partial widthsΓ(2Σ1/2) and Γ(2Π1/2) are much larger than
Γ(2Π3/2). Consequently, we may neglect the contribution of this
state as pointed out by Longley et al.8 as a good approximation
although the difference for the singlet state is smaller than that
for the triplet.

The ratio ofΓ(2Σ1/2) to Γ(2Π1/2) is two for larger internuclear
distances for both the states. This ratio is equal to that of the
statistical weight of the correlated2P3/2 to that of the2P1/2 state
of Ar+. At smaller distances, however, the ratios are higher than
2 for both the singlet and triplet states because the2Σ-character
of Γ(2Σ1/2) and theΠ-character ofΓ(2Π1/2) are dominant.

3.3. Ionized States.Figure 4 shows the potential curves for
the spin-orbit ionized states,2Σ1/2, 2Π1/2, and2Π3/2. The spin-
orbit separation between the ionized Ar+(2P3/2) state and Ar
+(2P1/2) state is calculated to be 0.167 eV, which is comparable
to the experimental value, 0.178 eV.3,4 Gemein and Peyerimhoff
carried out an ab initio spin-orbit coupling multireference CI
calculation for HeAr+.53 The present potentials are slightly
shallower (14, 12, and 11 meV forX2Σ1/2, A2Π3/2, andB2Π1/2)
than theirs (22, 13, and 17 meV) and have larger equilibrium
distances (3.0, 3.3, and 3.2 Å) than theirs (2.8, 3.1, and 3.0 Å).
The agreement is fairly good although we used one-configu-
ration description for each ionized state.

4. Cross Sections

4.1. Total Ionization Cross Sections.We show the energy
dependence of total ionization cross sections in the range of
0.05-1.0 eV in Figure 5.

In Figure 5a the ionization cross section for the singlet state
is compared with the results from the optical potentials of other
researchers.11,13,14,20 We did not find absolute cross section
measurement results for the singlet state. The optical potentials
of Martin et al. and Haberland and Schmidt are obtained from
their differential cross section experiments, and seems to include
an ambiguity about the magnitude ofΓ. The potential of Parr
et al. is from a fit to their energy dependence of total ionization
cross section, but the cross section is normalized to the room-

Figure 3. The dependence of the total and partial widthsΓ for ArHe
+ (2Σ1/2, 2Π3/2, and2Π1/2) ionized states on the internuclear distanceR
for (a) Ar + He*(21S) and for (b) Ar+ He*(23S).

Figure 4. The potential energy curve of ionized states for ArHe+ (2Σ1/2,
2Π3/2, and2Π1/2).
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temperature total quenching rate constant in a flowing afterglow
experiment.54 Burdenski et al. also proposed a optical potential
that reproduced the energy dependence of ionization cross
section, but we did not try to reproduce it because they based
it on an unpublished optical potential.19

The order of the magnitude of the present cross section is in
agreement with that for the other three curves although the
present cross section is smaller. The agreement is fair when
the ambiguity in the other results is taken into account. The
present cross section decreases with collision energy in the
energy range of less than 0.2 eV. This is inconsistent with the
cross sections of Martin et al. and Haberland and Schmidt, which
show a gradual increase with collision energy. This would be
due to the upward deviation of the real part potential around
3.0 Å.

For the triplet total ionization cross section in Figure 5b, we
also show the curve from the classical calculation with
parameters used by Siska,18 Parr et al.,20 and Burdenski et al.
and several absolute values of total ionization cross section from
a velocity-selected metastable atomic beam experiment by
Jerram and Smith.55 Both Parr et al. and Burdenski et al. used
Siska’s parameters for the real part of the optical potential.
Burdenski et al. calculated total cross sections with Siska’s
parameters for the total width as well as the resonance potential,

and found the discrepancy only in lower energies, and modified
only the parameters for the width. Parr et al. normalized their
experimental curve to a total quenching rate constants,54 and
performed a model calculation with width parameters different
from Siska’s to get a better fit to their result. This would provide
another “experimental” curve for comparison.

The present triplet total width is in good agreement with
experimentally obtained cross sections51 although the agreement
for the singlet is fair as discussed above. Superexcited triplet
states are probably easier to describe in electronic structure
calculations than corresponding singlet states.

The total ionization cross section increases over the energy
investigated, and shows saturation at higher energies. This result
is in qualitative agreement with the calculation based on
parameters experimentally obtained by Siska and other experi-
mental dependences16,17,19,20,56,57although the saturation is not
clear in some experiments.16,57 In the lower energy region, the
potential well is larger than the collision energy, and the cross
section decreases with energy (region I6,58). As the energy
increases, the collision energy is significantly larger than the
potential well, and the repulsive part of the potential plays a
predominant role for the behavior of total ionization cross
section, which is referred to region II. In region II, the cross
section increases. At much higher energies, the cross section
starts decreasing again because of probability saturation(region
III) although the treatment using the single optical potential may
lose significance. The saturation of cross-section increase
corresponds to the transition of region II to region III. The
energy range investigated of 0.05-1.0 eV falls in region II and
region III. In this region, the quantum mechanical interference
is not important, so that the classical description is valid as
shown above.

4.2. Partial Ionization Cross Sections.Figure 6 shows the
total and partial ionization cross sections. The thick lines
represent the corresponding quantum mechanical calculation
results. For the singlet as well as triplet states, the difference in
the total cross section curves is not significant. The classical
treatment is, therefore, quite satisfactory in this energy region.
The difference in partial cross section curves, however, is clearly
seen at higher energies. When partial cross sections are
calculated in the quantum mechanical scheme, the sum of the
partial cross sections is not equal to the total cross section
although this is the case only if partial widths are small enough,
which is pointed out in the Calculations section. The results
indicate that the sum of the partial ionization cross sections
significantly deviates from the total ionization cross section at
higher collision energies in quantum dynamics calculations. On
the other hand, it is guaranteed that classical total ionization
cross section is equal to the sum of partial ionization cross
sections from the formalism.

Thus, we conclude that classical treatment for partial cross
sections is better and that classical treatment should be used in
this energy region (0.05-1 eV) until a consistent quantum
mechanical treatment for partial cross section is established.

At lower energies ofEcol < 5 meV, ionization cross sections
may show resonance structures.17,60 However, the resonance
structures in integrated ionization cross section have not been
observed experimentally so far.

For the triplet state, the partial cross sections for the2P3/2

state and for the2P1/2 state increase. This result is in agreement
with the recent experimental results of two-dimensional Penning
ionization spectroscopy.9

We show the ratio of the calculated partial ionization cross
sections in Figure 7. At lower energies, the ratio of the cross

Figure 5. The dependence of ionization cross sectionsσon collision
energyEcol for (a) Ar + He*(21S) and for (b) Ar+ He*(23S). In part
a, the total ionization cross section by the optical potential obtained by
Martin et al.,13 Parr et al.,20 Haberland and Smith,14 and Feltgen et al.11

are also shown.48 In part b, the total ionization cross section by the
optical potential obtained by Siska,18 Parr et al.,20 and Burdenski et
al.19 and the absolute cross section by Jerram and Smith55 are also
shown.
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section for the2P3/2 state to that for the2P1/2(σ(2P3/2)/σ(2P1/2))
is about two, both for the singlet and triplet species. The ratio
of the two cross sections at lower energies was two, and this
ratio is in agreement with relative electronic state populations
in a thermal energy experiment.61

As the collision energy increases, the ratio also increases.
On the basis of the classical treatment, the increase for the singlet
species is slower than that for the triplet species. The result is
in agreement with an early measurement59 as well as recent two-
dimensional Penning ionization spectra.8,9

The ratios in quantum mechanical calculations are signifi-
cantly different from classical results. The quantum treatment
underestimated the ratio at higher energies. Furthermore, the
increase of the ratio is faster for the singlet state than for the
triplet state with collision energy, which is qualitatively
inconsistent with the classical result and the experimental
measurements. The present results indicate that the quantum
mechanical treatment tends to underestimate the ratio of the
σ(2P3/2)/σ(2P1/2) in higher energy regions in similar systems and
that classical treatment is desirable to estimate the ratio in the
energy range investigated. Longley et al. used a quantum
mechanical scheme to obtain the ratio,8 but the comparison using
classical treatment would be desirable.

The collision energy of experimental results has been up to
0.4 eV.9 The present result predicts at higher energies that the
increase of the ratio is more rapid and that the2P1/2 band
intensity shows a peak with collision energy.

To analyze the reason for the increase in the ratio, we have
examined opacity functions in the previous paper.31 We
investigated ratios of the opacity functionsP for several collision
energies. Each ratio is the sum of the opacity function for the
2Σ1/2 state and that for the2Π3/2 state to that for the2Π1/2 state.
The former two states correlate with the Ar+(2P3/2) state, and

Figure 6. The total cross section and partial cross sections are shown
for the calculated width in a classical trajectory calculation(thin curves)
and in a quantum mechanical calculation(thick curves) for (a) the singlet
and (b) the triplet states.

Figure 7. The energy dependence of the ratio of the ionization cross
section for the2P3/2 state,σ(2P3/2), to that for the2P1/2 state,σ(2P1/2).
Thin and thick curves are for classical trajectory calculations and
quantum mechanical calculations.

Figure 8. Center-of-mass differential cross sections for Ar-He in the
collision energy of 0.12 eV for (a) the singlet and (b) triplet states.
The results with the optical potentials by Martin et al.13 and Siska18

are included for the singlet and triplet states.
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the latter state to the Ar+(2P1/2) state. The ratio is about two at
Ecol ) 0.05 eV for all impact parameters, whereas the ratio
increases at smaller impact parameters as the collision energy
increases. This is clearly becauseΓ(2Σ1/2) is more than twice
as large asΓ(2Π1/2) at smaller internuclear distances, which
originates in the enhancement of the2Σ character of the2Σ1/2

state. Longley et al. also explained the increase of the ratio from
the same enhancement for the system Ar+ He(21S).8

4.3. Differential Cross Sections.Figure 8 shows center-of-
mass differential cross sections obtained by the quantum
mechanical calculation at the collision energy of 0.12 eV. The
results for the optical potential obtained by Martin et al.13 and
by Siska18 are also shown for the singlet and triplet states. For
the triplet state, the agreement is reasonable except for quantum
mechanical interference. For the singlet state, the present
differential cross sections are significantly larger than the results
of Martin et al. This is because the real-part of the present
potential is more repulsive than that of Martin et al. The
agreement with the experiment is not very good for differential
cross section even for the triplet state. Differential cross sections
may be more difficult to reproduce than the dependence of total
and partial ionization cross sections.

5. Summary and Concluding Remarks

Spin-orbit effects on the autoionization from superexcited
states of the first kind is examined theoretically for the system
Ar + He*(21S,23S) f Ar+(2P3/2,2P1/2) + He + e-. Ab initio
calculations have been carried out to obtain the potential energy
curves for the entrance and exit channels and partial widths for
each spin-orbit ionized state. Classical and quantum dynamics
is employed to study the dependence of ionization cross sections
on collision energy and angular distribution of the atoms. The
calculation has reproduced the order of the ionization cross
sections and the experimental fact that the ratio of the cross
section for the2P3/2 ionized state to that for the2P1/2 state
increases with collision energy for both the singlet and triplet
states.

There were arguments about whether an intermediate maxi-
mum in the single real-part potential exists or not for the single
state. The present ab initio widths indicates that a more flexible
form than a single-exponential function should be used for
widths to obtain a better fit to experimental results.

Quantum mechanical calculations are shown to underestimate
the ratio ofσ(2P3/2)/σ(2P1/2) at higher collision energies. Quantum
mechanical calculations are of course exact for the total cross
section, but have a flaw in that the sum of partial ionization
cross sections is not equal to the total cross section. Thus, a
quantum mechanical scheme should be avoided to discuss partial
ionization cross sections.

To summarize, the agreement with experiments for the triplet
state is good while the agreement for the singlet state is fair.
We may need an alternative approach for the singlet state, for
example, a filtering method to obtain the optical potential.62,63
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